Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Takashi Aridomi,* Asako Igashira-Kamiyama, Tatsuya Kawamoto and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail:
aridomi@ch.wani.osaka-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
Disorder in main residue
R factor $=0.052$
$w R$ factor $=0.154$
Data-to-parameter ratio $=10.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Λ_{L}-(L-Cysteinato- $\kappa^{2} \boldsymbol{N}, S$)bis(ethylenediamine$\left.\kappa^{2} N, N^{\prime}\right)$ cobalt(III) bis(perchlorate) sesquihydrate

In the crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{6}-\right.\right.$ $\left.\left.\mathrm{NO}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, each $\mathrm{Co}^{\mathrm{III}}$ atom is situated in a slightly distorted octahedral geometry, coordinated by one l-cysteinate and two ethylenediamine ligands. The compound has a non-coordinated COOH group, which adopts an equatorial orientation. The asymmetric unit contains two cations, four anions, and three water molecules.

Comment

Freeman et al. (1978) prepared two isomers of the bis(ethylenediamine)cobalt(III) complex with L-cysteinate (L-cys), $\Delta_{\mathrm{L}^{-}}$ and $\Lambda_{\mathrm{L}}-\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-N, S)(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)$, which were converted to the protonated species, $\Delta_{\mathrm{L}^{-}}$and $\Lambda_{\mathrm{L}}-\left[\mathrm{Co}(\mathrm{L}-\mathrm{Hcys}-N, S)(\mathrm{en})_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, respectively, by treatment with aqueous HClO_{4}. While the crystal structures of $\Delta_{\mathrm{L}^{-}}$and $\Lambda_{\mathrm{L}^{-}}\left[\mathrm{Co}(\text { L-cys- } N, S)_{-}\right.$ $\left.(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)$ were determined by X-ray crystallography, neither of $\Delta_{\mathrm{L}^{-}}$and $\Lambda_{\mathrm{L}^{-}}\left[\mathrm{Co}(\mathrm{L}-\mathrm{Hcys}-N, S)(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ has been structurally characterized to date. During the course of our synthetic investigation of polynuclear complexes with $\Lambda_{L^{-}}$ $\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-\mathrm{N}, \mathrm{S})(\mathrm{en})_{2}\right]^{+}$units (Konno, 2004; Aridomi et al., 2005), we obtained single crystals of $\Lambda_{\mathrm{L}}-[\mathrm{Co}(\mathrm{L}-\mathrm{Hcys}-N, S)$ $\left.(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, (I). We report here the crystal structure of (I), which is compared with the structure of $\Lambda_{\mathrm{L}}-[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-$ $\left.N, S)(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)$.

(I)

The asymmetric unit of (I) contains two crystallographically independent complex cations besides four $\mathrm{ClO}_{4}{ }^{-}$anions and three water molecules. The number of ClO_{4}^{-}anions implies that the complex cation of (I) is divalent. Each $\mathrm{Co}^{\text {III }}$ atom is coordinated by a bidentate- N, S L-Hcys and two bidentateN, N^{\prime} en ligands in a slightly distorted octahedral geometry (Fig. 1). The $\mathrm{Co}-\mathrm{N}_{\text {trans(S) }}$ bond distances [2.046 (8) and 2.019 (7) A] are appreciably longer than the $\mathrm{Co}-\mathrm{N}_{c i s(S)}$ distances [1.950 (8)-1.983 (8) \AA], which is ascribed to the trans influence of the thiolate S donor (Elder et al., 1973; Dickman et al., 1980). The Co-S distances in (I) [2.241 (3) and 2.241 (3) Å] are similar to those in $\Lambda_{\mathrm{L}}-\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-\mathrm{N}, \mathrm{S})(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)$ [2.234 (1) \AA] and $\left[\mathrm{Co}(\right.$ aet- $\left.N, S)(\mathrm{en})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ [aet $=2$-aminoethanethiolate; 2.2494 (8) Å; Konno et al., 2001]. The noncoordinated carboxyl group of the L-Hcys ligand in (I) is in a

Received 28 June 2006
Accepted 9 July 2006

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. All disorder components are shown.

A view of the two independent complex cations of (I), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) between them. H atoms bonded to C atoms have been omitted for clarity.
protonated form, which is compatible with the asymmetric $\mathrm{C}-\mathrm{O}$ bond distances (Table 1). The l-Hcys N, S-chelate ring in (I) has a λ conformation such that the COOH group adopts an equatorial orientation. This is in contrast to the structure of $\Lambda_{\mathrm{L}}-\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-N, S)(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)$, in which the L-cys N, S-chelate ring has a δ conformation with the axially orientated COO^{-} group (Freeman et al., 1978). It is considered that the intramolecular hydrogen bonding between the COO^{-}group and the adjacent en amine group in $\Lambda_{\mathrm{L}}-\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-N, S)(\mathrm{en})_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)$ is significantly weakened by the protonation, which allows the COOH group to adopt the preferable equatorial orientation in (I).

Figure 3
A view of the three-dimensional network through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{OClO}_{3}$ hydrogen bonds (dashed lines). H atoms bonded to C atoms, water molecules and the components of disordered ClO_{4}^{-}anions $(\mathrm{O} 21-\mathrm{O} 24)$ have been omitted for clarity.

It is interesting to note that en amine groups of a complex cation in (I) are hydrogen bonded with a COOH group of the neighboring cation to form a cyclic dimeric unit (Fig. 2 and Table 2). The dimer units are linked by $\mathrm{ClO}_{4}{ }^{-}$anions through several hydrogen bonds, generating a three-dimensional network structure (Fig. 3 and Table 2).

Experimental

To a solution containing $\Lambda_{L^{-}}\left[\mathrm{Co}(\mathrm{L}-\mathrm{cys}-N \cdot S)(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)(0.32 \mathrm{~g}$, $0.80 \mathrm{mmol})$ in water $(20 \mathrm{ml})$ were added $\mathrm{KMnO}_{4}(0.03 \mathrm{~g}, 0.10 \mathrm{mmol})$ and 1 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2.0 \mathrm{ml})$. The mixture was stirred at room temperature for 2 h . To the brown reaction solution was added $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.8 \mathrm{~g}, 5.0 \mathrm{mmol})$, and the resulting mixture was kept at room temperature for 3 d . The resulting dark-brown plateshaped crystals of (I) were collected by filtration.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]-$
$\left(\mathrm{ClO}_{4}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=525.22$
Monoclinic, $P 2_{1}$ $a=8.297$ (5) A
$b=17.069$ (3) \AA
$c=13.957$ (3) \AA
$\beta=90.82$ (3) ${ }^{\circ}$
$V=1976.5(13) \AA^{3}$
$Z=4$
$D_{x}=1.765 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Plate, brown
$0.40 \times 0.20 \times 0.05 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.623, T_{\text {max }}=0.938$
6307 measured reflections 5943 independent reflections

3031 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=30.0^{\circ}$
3 standard reflections every 150 reflections intensity decay: 5.0\%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.065 P)^{2}\right. \\
& \quad+0.3906 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e}^{-3}
\end{aligned}
$$

Absolute structure: Flack (1983), no Friedel pairs
Flack parameter: -0.02 (3)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-S1			
Co1-N1	$2.241(3)$	$\mathrm{Co} 2-\mathrm{N} 7$	$1.977(7)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.974(7)$	$\mathrm{Co} 2-\mathrm{N} 8$	$2.019(7)$
$\mathrm{Co} 1-\mathrm{N} 3$	$1.950(8)$	$\mathrm{Co} 2-\mathrm{N} 9$	$1.980(7)$
Co1-N4	$2.046(8)$	$\mathrm{Co} 2-\mathrm{N} 10$	$1.972(9)$
Co1-N5	$1.973(7)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.308(10)$
Co2-S2	$1.983(8)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.220(11)$
$\mathrm{Co} 2-\mathrm{N} 6$	$2.241(3)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.312(11)$
	$1.979(7)$	$\mathrm{O} 4-\mathrm{C} 10$	$1.201(11)$
S1-Co1-N3			
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$176.3(3)$	$\mathrm{S} 2-\mathrm{Co} 2-\mathrm{N} 8$	$177.1(2)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 5$	$174.9(4)$	$\mathrm{N} 6-\mathrm{Co} 2-\mathrm{N} 9$	$175.2(4)$

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H13...O2	0.90	2.43	2.843 (10)	108
N8-H17...O2	0.90	2.10	2.947 (9)	157
N5-H12 . O 4	0.90	2.21	3.067 (11)	160
N1-H4 \cdots O9	0.90	2.21	3.030 (13)	151
N2-H6 \cdots O6	0.90	2.26	3.086 (13)	152
N3-H8 \cdots O15	0.90	2.23	3.061 (13)	154
N4-H10 \cdots O14	0.90	2.19	3.045 (12)	159
N8-H18 . . $\mathrm{O}^{\text {i }}$	0.90	2.20	3.084 (12)	167
N9-H20 $\cdots \mathrm{O}^{\text {i }}$	0.90	2.28	3.135 (13)	159
N9-H19 . . $\mathrm{O} 10^{\text {i }}$	0.90	2.20	3.059 (15)	160
N10-H25 . O 25	0.90	2.17	3.064 (12)	172
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 25$	0.89 (9)	1.77 (8)	2.630 (9)	162 (11)
$\mathrm{O} 3-\mathrm{H} 2 \cdots \mathrm{O} 27$	0.82 (11)	1.98 (10)	2.673 (10)	141 (12)
O25-H54 ? O 26	0.85 (5)	1.87 (4)	2.696 (12)	165 (9)

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+2$.
H atoms bonded to C and N atoms were placed at calculated positions [$\mathrm{C}-\mathrm{H}=0.97$ (methylene) and 0.98 (methine) \AA, and $\mathrm{N}-$
$\mathrm{H}=0.90 \AA$] and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms of the carboxyl groups were located in a difference Fourier map and their positional parameters were refined with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})[\mathrm{O}-\mathrm{H}=0.82(11)$ and $0.89(9) \AA] . \mathrm{H}$ atoms of water molecules were also located in a difference Fourier map and were refined with restrained geometrical parameters $[\mathrm{O}-\mathrm{H}=0.85(3) \AA$, $\mathrm{H} \cdots \mathrm{H}=1.38(4) \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$. One en chelate ring is disordered over two positions ($\mathrm{C} 13 / \mathrm{C} 14$ and $\mathrm{C} 15 / \mathrm{C} 16$), which were refined with site occupancies of 0.66 (4) and 0.34 (4). One perchlorate anion is disordered over two positions (O17-O20 and O21-O24) and was refined with restrained geometrical parameters $[\mathrm{Cl}-\mathrm{O}=$ 1.40 (1) \AA and $\mathrm{O}-\mathrm{O}=2.29$ (1) \AA] and site occupancies of 0.5 .

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

TA expresses his special thanks for the Center of Excellence (21COE) program 'Creation of Integrated EcoChemistry of Osaka University’.

References

Aridomi, T., Hirotsu, M., Yoshimura, T., Kawamoto, T. \& Konno, T. (2005). Chem. Lett. 34, 770-771.
Dickman, M. H., Doedens, R. J. \& Deutsch, E. (1980). Inorg. Chem. 19, 945950.

Elder, R. C., Florian, L. R., Lake, R. E. \& Yacynych, A. M. (1973). Inorg. Chem. 12, 2690-2699.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Freeman, H. C., Moore, C. J., Jackson, W. G. \& Sargeson, A. M. (1978). Inorg. Chem. 17, 3513-3521.
Konno, T. (2004). Bull. Chem. Soc. Jpn, 77, 627-649.
Konno, T., Yoshimura, T. \& Hirotsu, M. (2001). Acta Cryst. C57, 538-539.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Molecular Structure Corporation, The Woodlands, Texas, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

