metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Takashi Aridomi,* Asako Igashira-Kamiyama, Tatsuya Kawamoto and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: aridomi@ch.wani.osaka-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.014 \text{ Å}$ Disorder in main residue R factor = 0.052 wR factor = 0.154 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 Λ_L -(L-Cysteinato- $\kappa^2 N$,S)bis(ethylenediamine- $\kappa^2 N$,N')cobalt(III) bis(perchlorate) sesquihydrate

In the crystal structure of the title compound, $[Co(C_3H_6-NO_2S)(C_2H_8N_2)_2](ClO_4)_2\cdot 1.5H_2O$, each Co^{III} atom is situated in a slightly distorted octahedral geometry, coordinated by one *L*-cysteinate and two ethylenediamine ligands. The compound has a non-coordinated COOH group, which adopts an equatorial orientation. The asymmetric unit contains two cations, four anions, and three water molecules.

Comment

Freeman *et al.* (1978) prepared two isomers of the bis(ethylenediamine)cobalt(III) complex with L-cysteinate (L-cys), Δ_L and Λ_L -[Co(L-cys-N,S)(en)₂](ClO₄), which were converted to the protonated species, Δ_L - and Λ_L -[Co(L-Hcys-N,S)(en)₂]-(ClO₄)₂, respectively, by treatment with aqueous HClO₄. While the crystal structures of Δ_L - and Λ_L -[Co(L-cys-N,S)-(en)₂](ClO₄) were determined by X-ray crystallography, neither of Δ_L - and Λ_L -[Co(L-Hcys-N,S)(en)₂](ClO₄)₂ has been structurally characterized to date. During the course of our synthetic investigation of polynuclear complexes with Λ_L -[Co(L-cys-N,S)(en)₂]⁺ units (Konno, 2004; Aridomi *et al.*, 2005), we obtained single crystals of Λ_L -[Co(L-Hcys-N,S)-(en)₂](ClO₄)₂·1.5H₂O, (I). We report here the crystal structure of (I), which is compared with the structure of Λ_L -[Co(L-cys-N,S)(en)₂](ClO₄).

The asymmetric unit of (I) contains two crystallographically independent complex cations besides four ClO_4^- anions and three water molecules. The number of ClO_4^- anions implies that the complex cation of (I) is divalent. Each Co^{III} atom is coordinated by a bidentate-*N*,*S* L-Hcys and two bidentate-*N*,*N'* en ligands in a slightly distorted octahedral geometry (Fig. 1). The Co $-N_{trans(S)}$ bond distances [2.046 (8) and 2.019 (7) Å] are appreciably longer than the Co $-N_{cis(S)}$ distances [1.950 (8)–1.983 (8) Å], which is ascribed to the *trans* influence of the thiolate S donor (Elder *et al.*, 1973; Dickman *et al.*, 1980). The Co-S distances in (I) [2.241 (3) and 2.241 (3) Å] are similar to those in Λ_L -[Co(L-cys-*N*,*S*)(en)₂](ClO₄) [2.234 (1) Å] and [Co(aet-*N*,*S*)(en)₂](NO₃)₂ [aet = 2-aminoethanethiolate; 2.2494 (8) Å; Konno *et al.*, 2001]. The noncoordinated carboxyl group of the L-Hcys ligand in (I) is in a

© 2006 International Union of Crystallography All rights reserved Received 28 June 2006 Accepted 9 July 2006

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. All disorder components are shown.

Figure 2

A view of the two independent complex cations of (I), showing $N-H \cdots O$ hydrogen bonds (dashed lines) between them. H atoms bonded to C atoms have been omitted for clarity.

protonated form, which is compatible with the asymmetric C-O bond distances (Table 1). The L-Hcys N,S-chelate ring in (I) has a λ conformation such that the COOH group adopts an equatorial orientation. This is in contrast to the structure of Λ_{L} -[Co(L-cys-N,S)(en)₂](ClO₄), in which the L-cys N,S-chelate ring has a δ conformation with the axially orientated COO⁻ group (Freeman et al., 1978). It is considered that the intramolecular hydrogen bonding between the COO⁻ group and the adjacent en amine group in Λ_{L} -[Co(L-cys-N,S)(en)₂]-(ClO₄) is significantly weakened by the protonation, which allows the COOH group to adopt the preferable equatorial orientation in (I).

A view of the three-dimensional network through the N-H···OClO₃ hydrogen bonds (dashed lines). H atoms bonded to C atoms, water molecules and the components of disordered ClO_4^- anions (O21-O24) have been omitted for clarity.

It is interesting to note that en amine groups of a complex cation in (I) are hydrogen bonded with a COOH group of the neighboring cation to form a cyclic dimeric unit (Fig. 2 and Table 2). The dimer units are linked by ClO_4^- anions through several hydrogen bonds, generating a three-dimensional network structure (Fig. 3 and Table 2).

Experimental

To a solution containing Λ_L -[Co(L-cys-N·S)(en)₂](ClO₄) (0.32 g, 0.80 mmol) in water (20 ml) were added KMnO₄ (0.03 g, 0.10 mmol) and 1 M aqueous H₂SO₄ (2.0 ml). The mixture was stirred at room temperature for 2 h. To the brown reaction solution was added Mn(ClO₄)₂·6H₂O (1.8 g, 5.0 mmol), and the resulting mixture was kept at room temperature for 3 d. The resulting dark-brown plateshaped crystals of (I) were collected by filtration.

Crystal data

$[Co(C_3H_6NO_2S)(C_2H_8N_2)_2]$ -	$V = 1976.5 (13) \text{ Å}^3$
$(ClO_4)_2 \cdot 1.5H_2O$	Z = 4
$M_r = 525.22$	$D_x = 1.765 \text{ Mg m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 8.297 (5) Å	$\mu = 1.31 \text{ mm}^{-1}$
b = 17.069 (3) Å	T = 296 (2) K
c = 13.957 (3) Å	Plate, brown
$\beta = 90.82 \ (3)^{\circ}$	$0.40 \times 0.20 \times 0.05 \text{ mm}$
Data collection	
Rigaku AFC-5R diffractometer	3031 reflections with $I > 2\sigma(I)$
ω –2 θ scans	$R_{\rm int} = 0.039$
Absorption correction: ψ scan	$\theta_{\rm max} = 30.0^{\circ}$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.623, \ T_{\max} = 0.938$	every 150 reflections
6307 measured reflections	intensity decay: 5.0%
5943 independent reflections	-

metal-organic papers

Refinement

regimenterni	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.3906P]
$wR(F^2) = 0.154$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5943 reflections	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
577 parameters	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983), no
independent and constrained	Friedel pairs
refinement	Flack parameter: $-0.02(3)$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Co1-S1	2.241 (3)	Co2-N7	1.977 (7)
Co1-N1	1.974 (7)	Co2-N8	2.019 (7)
Co1-N2	1.950 (8)	Co2-N9	1.980 (7)
Co1-N3	2.046 (8)	Co2-N10	1.972 (9)
Co1-N4	1.973 (7)	O1-C3	1.308 (10)
Co1-N5	1.983 (8)	O2-C3	1.220 (11)
Co2-S2	2.241 (3)	O3-C10	1.312 (11)
Co2-N6	1.979 (7)	O4-C10	1.201 (11)
S1-Co1-N3	176.3 (3)	S2-Co2-N8	177.1 (2)
N1-Co1-N4	174.9 (4)	N6-Co2-N9	175.2 (4)
N2-Co1-N5	175.5 (3)	N7-Co2-N10	174.5 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N6-H13···O2	0.90	2.43	2.843 (10)	108
N8-H17···O2	0.90	2.10	2.947 (9)	157
$N5-H12\cdots O4$	0.90	2.21	3.067 (11)	160
$N1-H4\cdots O9$	0.90	2.21	3.030 (13)	151
N2-H6···O6	0.90	2.26	3.086 (13)	152
N3−H8···O15	0.90	2.23	3.061 (13)	154
$N4-H10\cdots O14$	0.90	2.19	3.045 (12)	159
$N8-H18\cdots O7^{i}$	0.90	2.20	3.084 (12)	167
$N9-H20\cdots O6^{i}$	0.90	2.28	3.135 (13)	159
$N9-H19\cdots O10^{i}$	0.90	2.20	3.059 (15)	160
N10-H25···O25	0.90	2.17	3.064 (12)	172
O1−H1···O25	0.89(9)	1.77 (8)	2.630 (9)	162 (11)
O3−H2···O27	0.82(11)	1.98 (10)	2.673 (10)	141 (12)
O25-H54···O26	0.85 (5)	1.87 (4)	2.696 (12)	165 (9)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, -z + 2.

H atoms bonded to C and N atoms were placed at calculated positions [C-H = 0.97 (methylene) and 0.98 (methine) Å, and N-

H = 0.90 Å] and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms of the carboxyl groups were located in a difference Fourier map and their positional parameters were refined with $U_{iso}(H) =$ $1.5U_{eq}(O)$ [O-H = 0.82 (11) and 0.89 (9) Å]. H atoms of water molecules were also located in a difference Fourier map and were refined with restrained geometrical parameters [O-H = 0.85 (3) Å, $H \cdots H = 1.38$ (4) Å and $U_{iso}(H) = 1.5U_{eq}(O)$]. One en chelate ring is disordered over two positions (C13/C14 and C15/C16), which were refined with site occupancies of 0.66 (4) and 0.34 (4). One perchlorate anion is disordered over two positions (O17–O20 and O21–O24) and was refined with restrained geometrical parameters [C1–O = 1.40 (1) Å and O–O = 2.29 (1) Å] and site occupancies of 0.5.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

TA expresses his special thanks for the Center of Excellence (21COE) program 'Creation of Integrated EcoChemistry of Osaka University'.

References

- Aridomi, T., Hirotsu, M., Yoshimura, T., Kawamoto, T. & Konno, T. (2005). *Chem. Lett.* 34, 770–771.
- Dickman, M. H., Doedens, R. J. & Deutsch, E. (1980). Inorg. Chem. 19, 945–950.
- Elder, R. C., Florian, L. R., Lake, R. E. & Yacynych, A. M. (1973). *Inorg. Chem.* 12, 2690–2699.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Freeman, H. C., Moore, C. J., Jackson, W. G. & Sargeson, A. M. (1978). *Inorg. Chem.* 17, 3513–3521.
- Konno, T. (2004). Bull. Chem. Soc. Jpn, 77, 627-649.
- Konno, T., Yoshimura, T. & Hirotsu, M. (2001). Acta Cryst. C57, 538-539.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Molecular Structure Corporation, The Woodlands, Texas, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.